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Abstract- Pairwise, and more generally N-wise, pattern generation has long been known as an efficient and effective 

way to construct test stimulus and configurations for software testing. It is also highly applicable to digital design 

verification, where it can dramatically reduce the number and length of tests that need to be run in order to exercise a 

design under test adequately. Unfortunately, readily available tools for N-wise pattern generation do not fit conveniently 

into a standard hardware verification flow. This paper reviews the background to N-wise testing, and presents a new 

open-source SystemVerilog package that leverages the language's constrained randomization features to offer flexible and 

convenient N-wise generation in a pure SystemVerilog environment. 

I. INTRODUCTION 

In this paper we claim that the technique known as pairwise testing (or, more generally, N-wise testing) is 

applicable to design verification (DV), where it can significantly reduce the amount of testing effort required to 

achieve confidence that a design has been adequately verified. We describe a new open-source package that supports 

N-wise testing within any class-based SystemVerilog verification environment, including those based on the UVM 

[1] or similar methodologies. Finally we report on the features and performance of our package relative to other 

available N-wise tools. 

Section II outlines the background to the problems that can be addressed by N-wise testing. Section III is a brief 

tutorial review of the fundamentals of N-wise testing and generation. 

Readers who are already familiar with these concepts may wish to skip those two sections and go directly to 

section IV, which shows by example how our SystemVerilog N-wise package can be applied in practice. Section VI 

gives some details of the internal implementation of our package, and section VII reports some measurements of its 

effectiveness relative to other available tools. 

Finally, section VIII summarizes our conclusions, and section IX provides references and further reading. 

II. BACKGROUND 

A. Exhaustive Testing is Impossible 

Any non-trivial device under test (DUT) has so much state that there is no way to test it exhaustively in any 

realistic period of time. Current best practice in verification relies on a number of well-established techniques for 

exploring those parts of the DUT’s state space, and the space of possible stimulus, that are most important for real 

applications and for discovering possible design errors. Constrained random stimulus generation, combined with 

carefully planned and measured functional coverage, aims to exercise all practically useful operational scenarios 

with maximum automation and minimum engineering effort. 

B. An Alternative Approach 

In this paper we argue that the technique known as N-wise testing is worthy of consideration alongside these 

established strategies, especially in handling the range of possible configurations or setups of a given DUT. We 

review existing practice in the field, and present an open-source SystemVerilog package that supports N-wise testing 

in a convenient and flexible way that fits easily into existing widely-used verification methodologies. 

C. The Problem of Configurability 

Almost every DV project requires that testing be performed on a varied set of configurations of the DUT. For 

typical design IP projects, the structure of the DUT (number of ports, presence or absence of features, etc.) is highly 

configurable by its users, and the IP vendor must take great care to confirm that all legal configurations will work as 

expected and that illegal or meaningless configurations are correctly trapped by assertions or other checks. Other 

designs may have a fixed structural configuration, but are programmable through registers or pin-strapping so that 

the design can operate in various modes, with the modes being altered relatively infrequently. In both cases it is a 

major verification challenge to ensure that the DUT’s configuration space has been thoroughly and realistically 



 

exercised. It is not unusual to find that the space of possible configurations is itself large enough to make exhaustive 

testing impractical, even before any run-time activity has been exercised. 

For example, consider an IP block with between 2 and 8 bus interfaces, each of which can support 4 different 

protocols. Additionally, each port has a buffer whose depth can be chosen to be between 1 and 8 transactions. 

Already, with only this modest configurability, we have more than 1000 plausible configurations that a user might 

set up. In a high-quality verification project, any single configuration will be the subject of many hundreds of 

individual test cases in order to achieve good coverage of the verification plan. Configurability has dramatically 

enlarged the verification problem. 

D. Pragmatic Management of the Configurability Problem 

In practice, users typically choose a modest number of realistic configurations (including, as a minimum, those 

specified by key early customers) and run their complete test suite on those, targeting full coverage for each. 

Additionally, a randomized selection of configurations may be tested, but they are likely to be so numerous that it is 

impractical to apply the complete battery of tests to all of them, and so a limited subset of tests is used. This leads to 

a worrying dilemma. If a sufficiently large set of configurations is used, so that the team can claim good coverage of 

the configuration space, then it is likely that many of those configurations will have been inadequately tested. On the 

other hand, if each new configuration is tested to the point of full coverage according to the verification plan, this 

will be sufficiently time-consuming that there is little chance of covering the desired range of configurations. 

III. PAIRWISE AND N-WISE TESTING: BLAST CONTAINMENT FOR THE STATE EXPLOSION 

For many years, software testers - faced with configuration space challenges very similar to those described 

above - have turned to pairwise testing to bring the problem within reasonable bounds. The key idea behind pairwise 

testing is that difficult bugs are most commonly triggered by the interaction, or coincidence, of two parameters and 

not more. The reasoning goes like this (and is justified in much more detail in papers surveyed in reference [2]): 

 Although it is common to find bugs that are triggered when a single parameter has some special value, 

those bugs are almost always found quite early. It is not difficult to scan each individual parameter over 

its full range of values, testing at each different value of that parameter. 

 More difficult bugs require more than one parameter to take a specific value. For example, it may be that 

if buffer A has its minimum size, and buffer B has its maximum size, then there is a deadlock. It is 

clearly important to seek out these situations in an exhaustive manner. 

 Bugs that occur only when three or more parameters have specific values appear to be rare. It is neither 

practical nor useful to cover all such situations. 3-wise and higher order pattern generation is possible, 

and is supported by the techniques described in this paper. If a verification project's schedules permit, 

higher order N-wise pattern sets can be tested to reduce the risk of missing subtle corner-case bugs. 

Consequently, pairwise testing proposes that for any given set of parameters (or register values, or any other such 

adjustable values) we should construct a set of tests that exhaustively exercises every possible combination of any 

pair of parameters. In many cases this can be done with a surprisingly compact test set. By considering a rather 

small example we will show how effective pairwise test construction can be. First, however, it is useful to establish 

some terminology. 

A. Terminology used throughout this paper 

1. Parameters, value-sets and cardinality 

Each individual variable (or module parameter, or register value, or other adjustable value) that participates in the 

test configuration is known as a parameter
1
. Each parameter has a discrete collection of possible values that we call 

its value-set. For example, a Boolean parameter has a value-set containing the two values TRUE, FALSE. The 

number of values in a parameter’s value-set is the parameter’s cardinality. A Boolean parameter has cardinality 2; 

an eight-bit parameter has cardinality 256. 

2. Patterns 

In any given situation we have a collection of parameters, usually with differing cardinalities. This collection of 

parameters defines the problem space. A pattern in that problem space is a complete set of specific values, one value 

                                                           
1
 The word “parameter” has a specific meaning in SystemVerilog, and we considered using factor to denote an 

adjustable term in an N-wise set. However, use of “parameter” is so widespread in the literature of N-wise testing 

that we felt it would be confusing to use a different term here. Consequently we have accepted this new use of 

“parameter”, and we use the phrase module parameter if necessary to denote the SystemVerilog language feature. 



 

for each parameter. Each pattern represents a single test case or a single configuration to be tested. The total number 

of possible patterns is easily calculated: it is simply the product of the cardinalities of all parameters. 

3. N-wise Groupings 

To perform pairwise testing, we must identify every possible pair of parameters. For example, if we have three 

parameters P1, P2 and P3, then we want to try every combination of values of parameters P1 and P2, every 

combination of parameters P2 and P3, and every combination of parameters P1 and P3. Each of these pairs (P1-P2, 

P2-P3, P1-P3) is a grouping. More generally, we can imagine N-wise testing in which we consider all possible 

values of every grouping of N parameters. There is also a degenerate (but nevertheless interesting) case of 1-wise 

testing, in which our groupings each contain only one parameter, and our aim is simply to test that every value of 

each parameter has been tested at least once (i.e. it has appeared in at least one pattern). 

4. Combinations and pattern coverage 

For each grouping, we identify the complete set of all possible values of the group's N parameters. Each member 

of such a set is called a combination. A combination denotes specific values for each of the N parameters in its 

group, but also marks all remaining parameters as "don't care". If the parameters in a given N-wise grouping have 

cardinality C1,C2,…,CN then the number of combinations in the grouping is the product of its parameters' 

cardinalities: C1×C2×…×CN. 

If a pattern has the same values of a group's N parameters as does some combination, then we say that the pattern 

covers the combination. Clearly, a pattern can cover only one of a grouping's combinations. However, such a pattern 

usually covers combinations of other groupings too, and it is this multiple coverage that gives N-wise testing its 

power. The sole exception occurs when N is the same as the number of parameters; this is equivalent to demanding a 

pattern set containing every possible combination of every parameter. 

B. An Example of Pairwise Test Generation 

We now present a simple but plausible example to illustrate the value of pairwise testing in reducing the number 

or length of tests that must be run. As already mentioned, pairwise (2-wise) is the most common and often the most 

useful form of N-wise testing. 

Consider a small DUT having an 8-bit configuration register. Although this register can be modified at any time, 

it affects a communications protocol and therefore in practice it will be set up and then left unaltered for an extended 

period during a test. Some tests must, of course, modify this register on the fly, but the majority of functional testing 

uses it in a static setup that is configured just once at the start of a test. 

This 8-bit register has 256 possible values, and therefore it would seem that at least 256 tests must be run to 

exercise all possible operating modes. However, on closer examination we find that the register is naturally split into 

several fields, each controlling one aspect of device operation. 

 field F1 (2 bits, 4 values) 

 field F2 (2 bits, 4 values) 

 field F3 (2 bits, 3 valid values, one illegal value) 

 field F4 (1 bit, 2 values) 

 field F5 (1 bit, 2 values) 

The restriction of F3 to only three values means that there are 192 rather than 256 meaningful patterns. Using 

pairwise testing, however, we need to exercise many fewer combinations. There are: 

 16 possible combinations of F1 and F2, 

 12 possible combinations of F1 and F3, 

 … 

 4 possible combinations of F4 and F5. 

Using the SystemVerilog implementation of N-wise generation described in this paper, pairwise coverage was 

achieved using only 16 test patterns, as shown in the following table. Inspection of the table shows that every 

possible combination of pairs of parameters has been covered. As an example, coverage of the 12 combinations of 

parameters F2 and F3 has been shaded, and coverage of the 4 combinations of F4 and F5 has been hatched. 



 

  Test pattern 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

P
a

ra
m

et
er

 F1 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

F2 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 

F3 0 1 2 1 2 0 1 0 1 2 0 2 0 1 2 1 

F4 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 

F5 0 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 

Table 1: Pairwise coverage of the 5-field example 

In this small example, pairwise test generation has reduced the number of setup configurations from 192 to only 

16, a 12× improvement. Larger examples show much greater relative improvement. To illustrate this, consider a 

setup having 10 parameters each with 4 possible values. (Reference [2] would denote this as a "4^10" 

configuration.) Complete coverage of all possible combinations of these ten parameters requires more than a million 

test patterns. Our SystemVerilog implementation achieved pairwise coverage in only 32 patterns, a massive 

improvement of at least 30,000×. 

C. Effectiveness relative to random generation 

Although our pairwise generation makes use of some randomization internally, it is deterministic in the sense that 

it is guaranteed to yield a set of patterns that fully cover all pairwise combinations. An alternative approach might be 

to use a pure random generator to construct test patterns. To compare the two approaches, we set up a simple 

covergroup in the class describing our five-parameter example with a cross of each pair of parameters. For example, 

cross coverpoint f3Xf4 covered all possible combinations of the grouping of parameters F3 and F4. We then 

repeatedly randomized the object, sampling coverage after each randomization. After 16 randomizations (the 

number of patterns constructed by our pairwise generator), random generation had covered 100% of individual 

parameter values, but had been much less successful in covering pairwise combinations, as shown in the left-hand 

coverage report below. Only two of the 10 pairwise combinations were fully covered. Even after twice as many 

random tests (right-hand report), four of the 10 combinations were not yet fully covered. More than 50 

randomizations were required to achieve 100% coverage of all pairwise combinations. By contrast, using pairwise 

testing would cover all the combinations with only 16 tests. 

  

After 16 randomizations After 32 randomizations 

Figure 1: Pairwise coverage only partly achieved by randomization 

Randomized pattern generation left some pairwise cases uncovered even after quite extensive randomization. If 

any of those pairwise cases were important, then either a bug could be missed, or needless testing effort might be 

spent in hitting the case by randomization. 

IV. USING THE SYSTEMVERILOG PACKAGE 

Our goal was to make it as easy as possible for users to adopt pairwise testing in their SystemVerilog [3] 

verification environments, using data members of an ordinary SystemVerilog class to represent the parameters. In 

particular, we wanted users to be able to use familiar SystemVerilog data types for their parameters, with no 

restriction on variable names. Internally, though, the package needs to manipulate these parameters not as individual 

variables, but as an array of integers. Keeping these two representations in lockstep requires a significant amount of 

additional code injected into the user’s class, which is most conveniently done using macros. The configuration 

register example from section III.B above can be represented as in Code Example IV-1 below. To set up N-wise 

generation features, a user's class must meet two requirements: 



 

 a generator object, automatically derived from base class Nwise_base, must be created using package-

provided macro NWISE_BEGIN 

 variables representing N-wise parameters must be declared using package-provided macros 

NWISE_VAR_INT or NWISE_VAR_ENUM. 

An additional user constraint has been added to the example for illustration purposes. 

`include "nwise_pkg.svh"     Compile the package if necessary. Make macros available. 

 

package config_info_pkg;      User's package (could also be a module or program)  

  import nwise_pkg::*; 

 

  typedef enum {PARITY_NONE, PARITY_ODD, PARITY_EVEN} parity_e; 

 

  class Config;    User's Nwise-enabled class  

    `NWISE_BEGIN(Config, nwise_gen)  Declares Nwise generator object nwise_gen  

    `NWISE_VAR_INT(  int,      F1, {[0:3]})    Equivalent to rand int F1;  

    `NWISE_VAR_INT(  int,      F2, {[0:3]})    Value-set [0:3] must be specified  

    `NWISE_VAR_ENUM( parity_e, F3)             No value-set specification for enums  

    `NWISE_VAR_INT(  bit,      F4)        Value-set is optional for variables 8 bits or less  

    `NWISE_VAR_INT(  bit,      F5) 

    constraint c_no_parity_if_F1_zero {   Additional user constraint limits the Nwise set  

      (F1==0) -> (F3==PARITY_NONE); 

    } 

    string name;                          User methods and data members – no restrictions  

    function new(string nm); name = nm; endfunction 

    function void print(); 

      $display("Config(%s) has parity=%s", name, F3.name); 

    endfunction 

  endclass 

 

endpackage 

Code Example IV-1: Using nwise_pkg to implement the example of section III.B 

A. The NWISE_VAR… macros 

Each NWISE_VAR… macro invocation is, in effect, the declaration of a rand data member. The first argument is 

the variable’s data type. The second argument is its variable name.  

 NWISE_VAR_INT declarations can be of any integral data type, but it is also necessary to specify a value-

set for the variable. This follows the same syntax as for an inside constraint: braces containing a comma-

separated list of values and ranges. The current implementation throws a fatal runtime error if the value-

set contains more than 256 different values. If the data type is no more than 8 bits wide, the value-set 

argument can be omitted and is inferred as the full range of possible 2-state values of that data type. 

 NWISE_VAR_ENUM declarations specify an enumeration type and a variable name. The value-set is 

inferred from the enum type’s declaration. 

 Each of the above macros also has an _ARRAY variant allowing the user to specify a fixed-size array of 

parameters all having the same data type and value-set. 

B. Constraints over N-wise parameters 

As illustrated by constraint c_no_parity_if_F1_zero, constraints can be imposed on the relationships among 

the N-wise parameters. The constraint illustrated here (which, for simplicity, was not applied in our earlier example) 

limits the value of parity parameter F3 if parameter F1 is zero. The generation algorithm honors all such constraints 

when generating an N-wise test pattern set. 

C. Additional properties 

As illustrated by the example's additional methods and data member name, there is no restriction on what 

properties may be added to such a user class, nor on how the N-wise variables are used in other methods. However, 

it is very strongly recommended that the class have no other rand data members, as this could disturb the generation 

algorithm in potentially undesirable ways. 



 

D. Generating and rendering an N-wise set 

The user should now create an object of the new class type, and call methods of its generator object to perform 

generation and rendering of test patterns. The first step, generation, is usually performed only once by a single call 

to the generate_patterns method, specifying the N-wise order of generation (defaulted to 2 for pairwise). 

Generation builds an internal table of parameter patterns, and returns the number of generated patterns. User code 

can then call the render method to set up the object's data members to match any one of these patterns. The 

following example simply displays a table of generated values, using the built-in pattern_debug_string 

method. It assumes that the code in Code Example IV-1 has already been compiled. 

module ConfigTest; 

  import config_info_pkg::*; 

  initial begin 

    Config cfg; 

    int num_patterns; 

    cfg = new("DemoConfig"); 

    num_patterns = cfg.nwise_gen.generate_patterns(2);    make  pairwise patterns  

    for (int p = 0; p < num_patterns; p++) begin          scan over all generated patterns  

      cfg.nwise_gen.render_pattern(p);             set up values in cfg to match the chosen pattern  

      $display("pattern %2d: %s", p, cfg.nwise_gen.pattern_debug_string(p)); 

    end 

  end 

endmodule 

Code Example IV-2: Using the class from Code Example IV-1 

Although this example does nothing more than print the patterns on the console, normal usage would be to make 

use of each new pattern in turn to perform some testing. An alternate method render_pattern_new is capable of 

creating a completely new object with the desired contents, rather than (as in the example) modifying the existing 

generator object. The output from this example is shown below. Note that it differs somewhat from the results in 

Table 1 because of the additional user constraint that appears in Code Example IV-1 above. 

pattern  0: { F1:1, F2:2, F3:PARITY_ODD , F4:0, F5:0 } 

pattern  1: { F1:3, F2:1, F3:PARITY_NONE, F4:0, F5:1 } 

pattern  2: { F1:2, F2:3, F3:PARITY_ODD , F4:1, F5:1 } 

pattern  3: { F1:3, F2:3, F3:PARITY_EVEN, F4:1, F5:0 } 

pattern  4: { F1:1, F2:1, F3:PARITY_ODD , F4:1, F5:0 } 

pattern  5: { F1:0, F2:0, F3:PARITY_NONE, F4:0, F5:0 } 

pattern  6: { F1:1, F2:2, F3:PARITY_NONE, F4:1, F5:1 } 

pattern  7: { F1:2, F2:1, F3:PARITY_EVEN, F4:0, F5:1 } 

pattern  8: { F1:0, F2:2, F3:PARITY_NONE, F4:1, F5:0 } 

pattern  9: { F1:1, F2:0, F3:PARITY_EVEN, F4:1, F5:1 } 

pattern 10: { F1:3, F2:0, F3:PARITY_ODD , F4:0, F5:1 } 

pattern 11: { F1:2, F2:3, F3:PARITY_NONE, F4:0, F5:0 } 

pattern 12: { F1:3, F2:2, F3:PARITY_EVEN, F4:1, F5:1 } 

pattern 13: { F1:0, F2:1, F3:PARITY_NONE, F4:1, F5:1 } 

pattern 14: { F1:1, F2:3, F3:PARITY_EVEN, F4:0, F5:0 } 

pattern 15: { F1:2, F2:0, F3:PARITY_ODD , F4:1, F5:0 } 

pattern 16: { F1:0, F2:3, F3:PARITY_NONE, F4:0, F5:1 } 

pattern 17: { F1:2, F2:2, F3:PARITY_ODD , F4:0, F5:1 } 

Table 2 : Output from Code Example IV-2 

V. OTHER CONSIDERATIONS 

A. UVM integration 

The package fits comfortably into a UVM environment. The NWISE_VAR_* macros can coexist with UVM field 

automation macros without difficulty. The generator object that implements N-wise functionality is added to a user 

class by composition, not by inheritance, so the user class is free to inherit from uvm_object or any other base 

class without restriction. 

B. Planned enhancements 

Reference [4] suggests two important additional features that may be useful in practical applications: 

 Ability to include pre-determined test patterns - possibly from a previous run, possibly from known 

configurations that must be tested as part of the verification plan. Generation will add only enough 

patterns to complete the requested N-wise coverage. 



 

 Mixed-strength testing, in which (for example) pairwise testing is made more robust by having some 

subset of the parameters in a 3-wise grouping. 

Our implementation can readily support these features, but we plan to gather more experience with the package 

before defining an API to support them conveniently. 

C. Potential drawbacks 

Bach and Schroder's paper [5] on possible methodological pitfalls of pairwise testing offers valuable guidance, 

and raises some important questions. However, the authors do not find its arguments against N-wise testing totally 

compelling, and remain persuaded that N-wise can be a valuable technique even though, like any other approach, 

it must be used with care and awareness of its limitations. 

VI. IMPLEMENTATION DETAILS 

Our implementation is organized as a single SystemVerilog package, nwise_pkg, and a collection of macros for 

automated code generation. As indicated in the code examples of section IV, each user variable that will participate 

in N-wise generation must be a data member declared using a macro invocation whose arguments specify the 

variable's data type and name. These macros arrange for elements of a value-proxy array of int to be kept in 

lockstep with the values of the user's declared variables. In this way, construction of the N-wise patterns can proceed 

without knowledge of the names and data types of the user's variables, but the user's constraints on relationships 

among those variables are nevertheless honored. 

A. Automation Macros 

The macros (one of the NWISE_VAR... family) not only declare the data member as a rand variable, but also 

inject extensive automation code supporting the N-wise generation. Code Example VI-1 indicates the most 

important parts of the code generated by a sample invocation of macro NWISE_VAR_INT. 

`NWISE_VAR_INT( shortint, MyVar, {5, [10:19]} ) 

expands to: 

  class __NWISE_VAR_MyVar_PROXY extends nwise_pkg::IntSetVarUtils#(shortint); 

    randc shortint x; 

    constraint c {x inside {5, [10:19]};} 

  endclass 

  rand shortint MyVar; 

  const int __value__proxy__MyVar__idx = 

        __value_proxy_next_idx(__NWISE_VAR_MyVar_PROXY::create("MyVar")); 

  constraint __c__value_proxy__MyVar__ { 

    MyVar inside {5, [10:19]}; 

    value_proxy[__value__proxy__MyVar__idx] == MyVar; 

  } 

Code Example VI-1: Expansion of NWISE_VAR_INT macro 

Code Example VI-1 shows that the macro expands into two major sections. The first is the declaration of a 

utilities class derived from IntSetVarUtils. The second section is a declaration of the named member as a rand 

variable, with its chosen data type and with a constraint limiting it to have one of the specified set of values. This 

section also contains an initialized declaration of a const variable that is set up to contain the index number (in 

array value_proxy) of an array element that will represent the variable within the N-wise generation code. The 

create method that is called by this initialization serves many purposes. It constructs an object of the utilities class, 

establishes its index in the proxy array, and passes on the variable's name as a string so that it can be reported 

properly in debug messages. 

The utility class contains a constraint limiting the value of its randc variable to the same set of values as specified 

for the variable of interest. This constraint is used to construct a list of the complete set of possible values. 

B. Avoidance of object bloat 

The N-wise package macros inject a significant amount of code into the user's class. However, great care has been 

taken to minimize their burden on the user class's memory footprint. The N-wise generator object, which contains 

several potentially large arrays, is constructed lazily when the pattern generation functions are invoked, and 

therefore imposes no penalty if it is unused. It is therefore completely reasonable to use an N-wise enabled class as 

an ordinary transaction object in UVM or similar environments. 



 

VII. PERFORMANCE 

N-wise generation is a nontrivial mathematical problem, but many solutions have been described in the literature 

surveyed at reference [2]. Our development was not primarily focused on computing the N-wise pattern set, which 

has been widely covered elsewhere. Rather, we gave priority to integrating the generation smoothly into a typical 

SystemVerilog verification flow, including that of the Universal Verification Methodology (UVM) [1].  

At first, though, we chose to create a tabula rasa generator implementation, to help reinforce our own learning 

experience. Our "home-grown" generation algorithm is functionally correct (it leaves no desired combinations 

uncovered), and on realistic problems it typically yields test pattern sets that are only 10% to 20% larger than those 

from the best available tools. Its runtime is pleasingly fast on small problems (about one second to generate pairwise 

patterns for 10 parameters each of cardinality 10), but scales rather poorly with increasing problem size; for pairwise 

generation on a problem with N parameters each of cardinality C, its runtime scales as N
4
C

4
. 

We also attempted to implement the PICT heuristic described in Czerwonka’s excellent description of pairwise 

testing in software practice [4]. The freely available PICT tool [6], which we presumed uses that heuristic, has very 

impressive runtime performance that scales well with problem size. However, our re-implementation of the 

algorithm described in [4] gave disappointing run times, at least a factor of 3 slower than our own algorithm. We do 

not yet have an explanation for this observation, and plan to continue to work on it until we understand it fully. 

VIII. CONCLUSIONS 

N-wise test patterns are a valuable tool in design verification, especially for covering a configuration space. The 

implementation presented here is particularly flexible thanks to its use of the SystemVerilog constraint language, 

and has a low barrier to adoption because the addition of N-wise generation facilities to a user class imposes only 

minimal restrictions on other contents and usage of that class. We believe that our approach integrates well with 

existing methodologies and flows, and therefore presents useful benefits to digital design verification engineers 

when compared with other available implementations that do not fit naturally into a typical verification flow. 

Our implementation remains preliminary, with several interesting enhancements in preparation, and work 

continuing to improve its performance and capacity. Full source code and details of the implementation, including 

documentation of its API, can be found at [7]. It is made available under the liberal Apache open source license [8]. 
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