
Tutorial Proposal:

Verification of Virtual Platform Models

- What do we Mean with Good Enough?
Tutorial type: Industrial.

Speakers:

• Jakob Engblom, Intel, Stockholm, Sweden. Jakob.engblom@intel.com, +46734368958

• Ola Dahl, Ericsson, Stockholm, Sweden, ola.dahl@ericsson.com, +46725838355

Introduction
The use of virtual platforms (VP) for software development and system integration is well-

established in industry. Different companies use different tools, frameworks, and technologies, but

despite this there are many common patterns and anti-patterns in how models get developed,

deployed, and debated. In this tutorial, we would like to share from our experience around the

verification and validation of virtual platform models from inside of large enterprises.

Summary of Contents
When people ask if a VP model is correct, a VP developer may answer, perhaps with reference to

one of their more famous role models, that “a model needs to be good (accurate) enough, for its

purpose”. But how good is good enough, and from what perspective?

The Four Entities
There are four entities involved in the creation of a virtual platform model. The specification of the

design, the implementation of the hardware (that the model is modeling), the virtual platform

model itself, and the software. The software is designed to run on the hardware. The software

should also run on the VP models, and all should be derived from the specification.

However, there are several anti-patterns to this discipline. For example, the VP model might have

been based on software that was written based on observed hardware behavior. See Conway’s law

below.

Virtual Platforms and System Integration
When integrating two or more subsystems into a system, it is desirable to check that the integrated

system works as expected. An important trade-off is just how much the subsystems be tested before

they are integrated together, and how much of the testing can left to the integration?

Specification

Hardware
Virtual platform

model

Software Specification

Hardware
Virtual platform

model

Software

Some anti-patterns in VP and hardware development

mailto:Jakob.engblom@intel.com
mailto:ola.dahl@ericsson.com
https://wiki.c2.com/?EinsteinPrinciple

When running software on a VP, for example, a VP developer may argue that "the model will

eventually meet the software, and then we will see if it works". So, not much testing is needed on

the model in isolation.

Another, more test-ambitious VP developer may say that "I will test my virtual platform model and

ensure that it is implemented according to my interpretation of the specification, before it runs

software”. If the integration test does not behave as expected, the virtual platform model developer

can claim that the fault lies within the software. If the software developer had done a similar testing,

the software developer can claim that the fault lies within the virtual platform model.

In the tutorial, we will continue this reasoning on how to resolve the conflict of “where the fault lies”

and the need to apply tests at all levels of integration.

Negative and Positive Testing
VPs need to provide the ability to test and detect failure scenarios in addition to happy-case tests.

That a software stack boots on a VP says very little about the quality of the VP or the software.

Software is often far too forgiving and will run despite the VP setup not really matching reality. Or

the VP model is too forgiving versus the software, allowing incorrect software to run. We need

models and tests that take both positive and negative into account.

Software Laws
Conway’s Law: The organizational structure will be reflected in hardware and software. If major

interfaces in the VP do not follow the organizational structure, problems will develop. Organizational

boundaries can also limit the access to specifications, limiting or complicating VP modeling.

Hyrum’s Law: Developers using an interface will likely come to rely on undocumented or unspecified

behaviors. The VP model cannot be expected to follow the Hyrum’s law aspects of the hardware –

they have to rely specification and consider issues as software or hardware bugs in case

implementation aspects creep in.

Software scenarios
that work on

hardware

Software scenarios
that fail on
hardware

Software scenarios that work on VP

Hardware that the
software is

supposed to run on

Hardware where
the software is

supposed to fail

VP variants that the software
work on

VP is not strict about negative scenarios Software adapts to the VP model

